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1.1. Objectives and methodology

Obtain a comprehensive and specialized software to analyze time
series.

Evenly or unevenly time series
Afected by systematic errors or not

Studying some geodetic time series.

Length of day variations
Position of GPS stations
Celestial Pole offsets

We have not focussed on the origin or cause of the periodic
patterns. We will suggest possible candidate factors.

MATLAB was chosen as the main tool to carry out this task.
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2. THE SIGNAL DETECTION PROBLEM
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2.1. Introduction to time series analysis

Definition

A time series is a sequence of data {d (t1) , d (t2) , . . . , d (tN)} (N ∈ N)
obtained by estimating or measuring a certain magnitude d in a discrete set
of epochs {t1, t2, . . . , tN} where ti 6= tj for all i , j = 1, 2, . . . ,N.
The finite set {t1, t2, . . . , tN} is commonly known as the time domain of
the series.

Components

Trend ⇒ T (t)

Short Periodic ⇒ S(t)

Long Periodic ⇒ L(t)

Periodic ⇒ S(t) + L(t)

Noise ⇒ R(t)
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2.1. Introduction to time series analysis

Classification

Regarding physical property d , we talk about scalar time series and
vectorial time series.

A evenly time series verifies:

ti = t1 + (i − 1) · 4t for i = 1, 2, . . . ,N and 4t 6= 0

Otherwise, the time series is called unevenly.

If it depends on two or more parameters ⇒ multidimensional.
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2.2. Harmonic Analysis

Notation

CYCLE: pattern of states adopted by the phenomenon that is
repeated at each certain period of time.

FUNDAMENTAL FREQUENCY, f : is the number of cycles that
the phenomenon completes per unit of time.

ANGULAR FREQUENCY:

ω = 2 · π · f

PERIOD, Π: time took by the phenomenon to complete a cycle.

Π =
1

f
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2.3. The signal detection problem

Objective and tools

It is focused on the estimation of the harmonic content.

The periodogram is a mathematical tool that allows us to guess the
spectral lines that better explain the time series.

Leakage problem

The energy of the frequency is leaked
around the spectral line.

Solution

You can avoid the inclusion of these
spurious frequencies by drawing the
harmonics from the periodogram
iteratively.
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3. NON-LINEAR HARMONIC ANALYSIS

3.1. THE ALGORITHM.
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3.1. The algorithm: Non-linear harmonic analysis

Suggested by W. Harada and T. Fukushima [Harada, 2003]

The coefficients of a polynomial quadratic trend and other linear
parameters (Least Squares Method)

Frequencies and other non-linear parameters (BFGS)

Number of non-linear parameters (until the weighted residual root
mean square, WRMS, turns out to be less than a threshold)
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3.1. The algorithm: Objective function

Let us consider a vectorial time series
{

tn, ~dn

}
n=1,...,N

Objective function

φ =
N∑

n=1

M∑
m=1

µnm

[{
L∑

l=1

almψl(t)|t=tn

}
− dnm

]2

dnm is the value of the m-th component at epoch tn.

N is the number of observations.

M is the dimension of the vectorial time series.

L is the number of basis functions ψl .

µnm is the weight assigned to dnm

alm are the linear coefficients that need to be estimated.
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3.1. The algorithm: Basis functions

The set of basis functions {ψl , l = 1 . . . L} is:

Three polynomial functions

ψ1(τ) = 1, ψ2(τ) =
4τ

T
, ψ3(τ) =

(
3(N − 1)

4(N + 1)

)
ψ2

2(τ)− 1

where T = tN − t1, and τ = t − t1+tN
2 = t − t1 − T

2

Two Fourier terms for each {ωk , k = 1 . . .K}

ψ2k+2(τ) = sin(ωkτ),

ψ2k+3(τ) = cos(ωkτ)

Two mixed secular terms for some frequencies {ωki} for i = 1 . . . S .

ψ2K+(i+3)(τ) = τ sin(ωki τ)

ψ2K+(i+4)(τ) = τ cos(ωki τ)
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3.1. The algorithm: Frequency extracting process

Lomb Periodogram

P(ω) =
M∑

m=1

[
XmV

2
m + YmU

2
m − 2ZmUmVm

XmYm − Z 2
m

]

Xm =
N∑

n=1

µnm sin2(ωτn), Ym =
N∑

n=1

µnm cos2(ωτn),

Zm =
N∑

n=1

µnm sin(ωτn) cos(ωτn), Um =
N∑

n=1

µnmenm sin(ωτn),

Vm =
N∑

n=1

µnmenm cos(ωτn), enm = dnm −

{
L∑

l=1

alψl(τn)

}

P = Max P(ω), ωP = Arg max P(ω)
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3.1. The algorithm: Frequency extracting process

Extended Periodogram

Q(ω) =
M∑

m=1

[
X ′mV

′
m

2
+ Y ′mU

′
m

2 − 2Z ′mU
′
mV
′
m

X ′mY ′m − Z ′m
2

]

X ′m =
N∑

n=1

µnmτ
2
n sin2(ωτn), Y ′m =

N∑
n=1

µnmτ
2
n cos2(ωτn),

Z ′m =
N∑

n=1

µnmτ
2
n sin(ωτn) cos(ωτn), U ′m =

N∑
n=1

µnmenmτn sin(ωτn),

V ′m =
N∑

n=1

µnmenmτn cos(ωτn), enm = dnm −

{
L∑

l=1

alψl(τn)

}

Q = Max Q(ω), ωQ = Arg max Q(ω)
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3.1. The algorithm: Frequency extracting process

d(t) = sin (2π · 0.01 · t)

If P > Q ⇒ ωk = ωP (Fourier)

If P < Q ⇒ ωk = ωQ (Fourier + secular)
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3.1. The algorithm: Linear and non-linear processes

We need to estimate the coefficients
{alm, l = 1, . . . , L , m = 1, . . . ,M} that
minimize the objective function φ(~a, ~ω)

⇒ Least Square Method (LSM)

Once we have ~a = â(~ω), we can regard

φ(~a, ~ω) = φ̂(~ω)

Minimization problem with non-linear parameters

⇒ Quasi-Newton algorithm BFGS
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3.1. The algorithm: Stop criteria

Weighted residual root mean square, WRMS:

WRMS =

√
φ∑N

n=1

∑M
m=1 µnm

If WRMS < ε ⇒ STOP

TO TAKE INTO ACCOUNT

The method estimates linear and non-linear
parameters again and again as a new fre-
quency is added to the model.
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APPLICATION OF THE NON-LINEAR HARMONIC MODEL

3.2. THE LENGTH OF DAY WITHOUT
TIDAL EFFECTS
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3.2. Length of day without tidal effects

RAW DATA DESCRIPTION

Definition: The variation of LOD (∆) is the difference between the
astronomically duration of the day and 86400 s.

Source: VLBI data provided by LAREG at IGN (France)

Time domain: Unevenly and daily time series from April 12th, 1980
to December 31st, 2008.

Number of observations: 3197 ⇒ 30 % of 28 years.

INPUT DATA

Tidal effects δ∆ can be modeled with
high accuracy (Petit and Luzum, 2010):

∆̂ = ∆− δ∆
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3.2. Length of day without tidal effects

ANALYSIS DESCRIPTION AND RESULTS

Trend: Quadratic polynomial trend component.

Periodogram step-size: 10−5 cpd

Number of frequencies: 15

Final WRMS: 0.1839 ms

WRMS reduction: 75.16 %

TLOD (τn) = (1.53931± 0.00318) +

+ (−0.45459± 0.00297)ϕ2 (τn) +

+ (−0.03832± 0.00406)ϕ3 (τn)

τn = tn − 49586.5 MJD
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3.2. Length of day without tidal effects

Π S C

days ms ms

5916.35 -0.1247 0.6172
365.07 0.0931 -0.3455
182.73 0.1499 -0.2115
870.38 0.0893 0.0040

1631.87 -0.0006 -0.0050
981.52 0.0495 -0.0293
121.84 0.0419 0.0211
690.65 -0.0027 -0.0511

91.05 -0.0141 0.0424
13.66 0.0229 -0.0386

780.28 -0.0048 -0.0473
125.67 0.0322 0.0234

98.78 0.0037 -0.0070
75.18 -0.0037 -0.0379
71.79 -0.0057 0.0165

CONCLUSIONS

16.20 years with an amplitude of
0.6296±0.0037 ms

Annual signal with an amplitude of
0.3578±0.0033 ms

Semiannual signal with an amplitude of
0.2593±0.0033 ms

Lunar semi-sidereal period

Periods ranging from 1.8 to 2.5 years
⇒ QBO?

Period of ≈ 4.47 years ⇒
ENSO?

Period is linked to mixed secular
terms with an amplitude of 0.0288 µs.

Also linked to mixed secular terms.
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BACKGROUND

4. NOISE IN THE DATA
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4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



4. Background: noise in the data

POWER SPECTRA

P(f ) = P0 · f k

White Noise: k = 0

Flicker Noise: k = −1

Random Walk Noise: k = −2

COLORED NOISE≡NOT WHITE

Qy = σk · Qk

[SDP Williams, 2003]

Log-Log scale

log P(f ) = log P0 + k · log f

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 24 / 53



5. FHAST ALGORITHM
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5.1. FHAST algorithm

This new algorithm combines the strongest points of:

Non-Linear Harmonic Analysis (Fukushima and Harada)

Least-Squares Variance Component Estimation (LS-VCE)
(Amiri-Simkooei and Teunissen )

This procedure allows us to determine a:

FUNCTIONAL MODEL

E (~d) = ~h = B ·~a

STOCHASTIC MODEL

D(~d) = Qy = Q0 +
∑p

k=1 σkQk

We avoid including spurious frequencies that might refer to the noise
but not to the phenomenon represented by the data.
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We avoid including spurious frequencies that might refer to the noise
but not to the phenomenon represented by the data.
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5.1. FHAST algorithm: Objective function

Simplification: Scalar time series + single colored noise component

Objective function for white noise component

φ =
N∑

n=1

µn

[
dn −

{
L∑

l=1

alψl(tn)

}]2

=
N∑

n=1

µn (dn − hn)2

GENERALIZED OBJECTIVE FUNCTION

φ = (d − h) T Q−1
y (d − h) =

N∑
i=1

N∑
j=1

µij (di − hi ) · (dj − hj)
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5.1. FHAST algorithm

Step 1: Remove trend component (LSM).

Step 2: Linear robust fit of the log-log Lomb periodogram

Slope ⇒ spectral index (k)
SDP Williams, 2003⇒cofactor matrix (Qk)

Step 3: Calculate the Lomb and the extended periodogram to
extract the new frequency:

P (Bj , ωj) = d TQ−1
y Bj

(
Bj

TQ−1
y Bj

)−1
Bj

TQ−1
y d

Denoised Extended Periodogram

Bj =


t1 sin (ωj t1) t1 cos (ωj t1)
t2 sin (ωj t2) t2 cos (ωj t2)

...
...

tN sin (ωj tN) tN cos (ωj tN)
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5.1. FHAST algorithm

Step 4: Add the new frequency to the functional model matrix
and estimate the variance component of the noise
(LS-VCE)

σ̂i+1 = G−1v

Step 5: Estimate linear and non-linear parameters of the
functional model by using LSM and BFGS.

Step 6: Re-estimate the functional and stochastic model by
taking into account the vector of angular frequencies
obtained from the previous step.

Step 7: When should the algorithm stop?

STOP CRITERIA

WRMS< ε

SNR =
√

P(fi )/median [Pi (f )] < ε̃

A set number of frequecies is drawn.
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5.1. FHAST algorithm

FILTERING PROCESS

Frequencies with a SNR less than certain value
are removed and the model is re-estimated
with the remaining signals.

IMPORTANT

All the parameters in the functional model, as
well as the variance component, are
re-estimated again and again as a new
frequency is added to the model.
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5.2. Synthetic example

SYNTHETIC SERIES

Includes 1.04, 3 and 4.16 cycles/year (the latter linked to mixed secular terms).

We add a flicker noise with σ2 = 0.3844 units.
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5.2. Synthetic example

NON-LINEAR HARMONIC ALGORITHM

Finds frequencies that not explain the nature of the time serie.

Does not estimate the noise component.
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5.2. Synthetic example

FHAST ALGORITHM

Gets the real frequencies with the correct amplitude and basis functions.

Estimates the noise component properly.
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5.3. Application: Position time series of GPS stations

RAW DATA DESCRIPTION

Definition: Horizontal and vertical variations of the position of GPS
stations (ITRF2008)

Source: GPS data provided by LAREG at IGN (France)

Raw data: 3 scalar time series for station (E,N,H).

Time domain: Unevenly with weekly observations.

Input data: Obtained after removing trend, discontinuities and
transformation parameters (translation, rotation and scale).
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5.3. Application: Position time series of GPS stations

ANALYSIS

Number of stations: 318 stations (≡ 954 scalar time series).

Stochastic Model: A single fractional spectral index.

Harmonic Model: Up to 7 frequencies including a final filtering
process (SNR < 3)

ESTIMATED NORMAL DISTRIBUTIONS k ∼ N(µ, σ)

Component µ σ ICσ Covariance Component

East (E) -0.8427±0.0253 0.2214 [0.2129, 0.2488] Less noisy
North (N) -0.8648±0.0227 0.2054 [0.1906, 0.2227]
Height (H) -0.7950±0.0212 0.1917 [0.1778, 0.2078] The noisiest
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5.3. Application: Position time series of GPS stations

EAST NORTH HEIGHT

freq E N H
(cpy) ( %) ( %) ( %)

0.95-1.05 52.83 58.18 78.62
2.05-2.15 43.08 17.61 23.58
3.05-3.15 8.176 4.088 12.58
4.15-4.25 17.30 22.33 27.36
6.15-6.25 11.32 22.01 2.516

freq E N H
(cpy) (mm) (mm) (mm)

0.95-1.05 1.2323 1.3590 4.1446
2.05-2.15 0.5191 0.4790 1.4870
4.15-4.25 0.3132 0.2994 1.1341
6.15-6.25 0.2654 0.4325 1.0388
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LARGER ANNUAL AMPLITUDE
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6. THE PATCHED PERIODOGRAM
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6. Patched periodogram
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6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

INPUT DATA

IAU1980 pole offsets time series

Vectorial, evenly, daily spaced time
series (δψ, δε)

Time domain:
23/Sep/2000-23/Sep/2010

ANALYSIS

Comparison of the results by using the common periodogram
(WNLHA) and the patched periodogram (QWNLH)

Number of frequencies: 20

Window-size: 300 frequencies

Correction stage after 4 patches

P. A. MART́INEZ ORTIZ () NON-LINEAR HARMONIC MODELS June, 18th 2011 42 / 53



6.1. Application: IAU1980 Pole offsets

No. Ref . Π Sψ Cψ Sε Cε
days mas mas mas mas

1 1 365.18 1.30 − 5.76 0.36 0.02
2 2 182.96 1.75 − 1.11 − 0.31 − 0.53
3 3 3399.98 0.54 1.40 − 0.53 1.14
4 6 1597.20 − 0.11 − 0.22 0.06 − 0.21
5 5 449.79 0.36 0.18 − 0.10 0.14
6 4 13.65 − 0.12 − 0.47 − 0.24 0.13
7 7 31.90 − 0.19 − 0.12 − 0.00 − 0.03
8 8 27.53 0.15 − 0.08 0.02 0.06
9 9 27.02 −0.01 0.06 0.01 −0.10

10 11 13.59 0.01 −0.10 −0.10 0.02
11 10 371.38 −0.96 0.40 1.62 −0.12
12 12 9.55 − 0.00 − 0.14 − 0.01 0.03
13 14 14.79 0.05 − 0.02 − 0.07 − 0.04
14 13 13.16 0.06 −0.00 −0.01 −0.07
15 17 206.02 −0.01 −0.05 0.07 0.03
16 16 9.12 0.08 0.01 − 0.04 0.03
17 15 29.78 − 0.02 0.00 − 0.01 − 0.00

OBSERVATIONS

Annual

Semiannual

9.3-year period (Lunar
perigee)

Lunar anomalistic
month

Lunar semi-sidereal
month

445.5-day, Free Core
Nutation

4.3-year

Periods close to a
sinodic month, a
fortnight and 9 days.
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6.1. Application: IAU1980 Pole offsets

No. Π SSψ CCψ SSε CCε
days µas µas µas µas

4 1597.20 −0.21 0.06 −0.26 −0.14
11 371.38 −0.25 −0.33 0.12 0.60
17 29.78 −0.10 0.03 0.04 0.03
20 9.33 0.02 0.10 0.03 −0.02

Computation time

WNLHA: 3032.30 s

QWNLH: 2286.61 s
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7. Conclusions

1 Development of the FHAST algorithm for the analysis of time series

2 Development of the Patched Periodogram

3 Comprehensive software for non-linear harmonic analysis of time series (MATLAB)

COMMON PATTERNS OF ALL PACKAGES

Evenly or unevenly time series with graphical displays

Functional model: Quadratic polynomial trend+ Fourier + mixed secular terms

Estimated uncertainties for linear and non-linear parameters

NLHA package

Scalar and vectorial time series with white noise component

Harmonic content can be derived or fixed

WNLHA package (as extension of NLHA package)

It can perform a weighted harmonic analysis

Adds other stop criteria and includes a filtering SNR process

Periodogram estimation can be slightly accelerated
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7. Conclusions

FHAST package:

Addressed to scalar time series+ colored noise

Stochastic Model that can be fixed or estimated

(Co)variance component estimations can be negative

RFHAST package (extension of FHAST package)

An exponential re-parametrization is performed for the LS-VCE process

ANALYZED TIME SERIES

Celestial Pole offsets

Length of day variations

Geocenter variations caused by continental water flux

Multidimensional spatio-temporal models for continental water flux

Position of GPS stations
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8. Outlook

Application of the routines and algorithms:

To other time series coming from different fields
Focus on the origin of the detected signals

Improvement of the routines and algorithms:
Robust determination of crossover frequencies
Solve problems related to the ill-conditioned matrices
Analysis of vectorial time series by using the FHAST algorithm
(FHAST-VEC package) ⇒ GPS+VLBI position time series
Improve the computation time ⇒ PATCHED PERIODOGRAM
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